
lenny abs
2000/12/1
page 1

i

i

i

i

i

i

i

i

Design Strategies for

Irregularly Adapting

Parallel Applications

Leonid Oliker� Rupak Biswasy

Hongzhang Shanz Jaswinder Pal Singhx

Achieving scalable performance for dynamic irregular applications is eminently
challenging. Traditional message-passing approaches have been making steady
progress towards this goal; however, they su�er from complex implementation re-
quirements. The use of a global address space greatly simpli�es the programming
task, but can degrade the performance of dynamically adapting computations. In
this work, we examine two major classes of adaptive applications, under �ve com-
peting programming methodologies and four leading parallel architectures. Results
indicate that it is possible to achieve message-passing performance using shared-
memory programming techniques by carefully following the same high level strate-
gies.

Adaptive applications have computational workloads and communication pat-
terns which change unpredictably at runtime, requiring dynamic load balancing to
achieve scalable performance on parallel machines. EÆcient parallel implementa-
tions of such adaptive applications are therefore a challenging task. This work exam-
ines the implementation of two typical adaptive applications, Dynamic Remeshing
and N-Body, across various programming paradigms and architectural platforms.
We compare several critical factors of the parallel code development, including per-
formance, programmability, scalability, algorithmic development, and portability.

�One Cyclotron Rd, MS:50B-2239, Lawrence BerkeleyNational Laboratory, Berkeley, CA 94720

(loliker@lbl.gov).
yMail Stop T27A-1, NASA Ames Research Center, Mo�ett Field, CA 94035

(rbiswas@nas.nasa.gov).
zDepartment of Computer Science, 35 Olden Street, Princeton University, Princeton, NJ 08544

shz@cs.princeton.edu.
xDepartment of Computer Science, 35 Olden Street, Princeton University, Princeton, NJ 08544

jps@cs.princeton.edu.

1



lenny abs
2000/12/1
page 2

i

i

i

i

i

i

i

i

2

Dynamic Remeshing and N-Body are irregular dynamic applications where
the processor workloads and interprocessor communication can change dramatically
with time; thus, dynamic load balancing is a required component. Our Dynamic
Remeshing application simulates 
ow over an airfoil, by re�ning localized regions of
the underlying unstructured mesh. It consists of several distinct modules, including
mesh adaptation, load balancing, and numerical solution. The N-Body problem is a
classical one, and arises in many areas of science and engineering. Having speci�ed
the initial positions and velocities of the N interacting bodies, the problem is to
�nd their positions after a certain amount of time. Our experiments simulate two
neighboring Plummer model galaxies that are about to undergo a merger.

We compare the most popular implementation strategy, message passing with
MPI, against a number of alternate approaches. In the message-passing model,
each process has only a private address space, and must communicate explicitly
with other processes to access their (private) data. This model is perhaps the
most diÆcult to program for irregular applications; however, the bene�ts lie in
enhanced performance for coarse-grained communication and implicit synchroniza-
tion through blocking communication. We also evaluate the e�ectiveness of using
the SHMEM communication library, which uses symmetric address spaces for in-
dividual processes. This allows one-sided communication, unlike explicit message
passing which requires send-receive pairs. Message-passing results are present on
several parallel systems, including the distributed-memory Cray T3E located at
NERSC.

Next, we examine an implementation using the OMP programming strat-
egy, which uses shared-memory algorithms and OpenMP-style compiler directives
on systems supporting global addressing. OMP can greatly reduce programming
overhead compared to message passing, but may su�er from poor spatial locality
of physically distributed shared data. The cache-coherent shared address space
(CC-SAS) programming methodology is then examined for our adaptive applica-
tions. Here, remote data are accessed just like locally-allocated data using loads and
stores, much like OMP. However, the CC-SAS approach focuses on spatial locality
through methods such as data remapping and replication, which are traditionally
not considered a part of the shared-memory programming paradigm. Both OMP
and CC-SAS results are presented on the SGI Origin2000, a scalable, hardware-
supported cache-coherent non-uniform memory access (CC-NUMA) system, with
an aggressive communication architecture.

Experimental results using the hybrid programming paradigm are then re-
ported. This mixed programming method is well suited for the latest tera
op-scale
parallel architectures, which are built as clusters of shared-memory multi-processors
(SMPs). Here, two layers of parallelism are combined by implementing OpenMP
codes within the SMPs, while using message passing between the SMP clusters. For
our test cases, we weigh the performance gains versus the increased programming
complexity and reduced portability, as compared with pure MPI codes. Hybrid
experiments are performed on the latest generation of IBM POWER3 SMP cluster
located at SDSC. Each node of this system consists of eight processors connected via
a crossbar to the shared memory. The nodes are connected to each other through
an omega-type topology switch interconnect.



lenny abs
2000/12/1
page 3

i

i

i

i

i

i

i

i

3

Finally, we present multithreaded results on the radically di�erent architec-
ture of the Cray MTA. The MTA is a true shared-memory system in which data
placement is not required due to a unique memory hashing scheme. This makes
programmability much easier than on standard cache-based multiprocessor sys-
tems. Rather than using data caches to hide latency, the MTA processors use
multithreading to tolerate latency. Performance thus depends on having a large
number of concurrent computational threads. Experiments were performed on the
eight-processor MTA located at SDSC. Results show that multithreaded systems
o�er tremendous potential for eÆciently solving some of the most challenging prob-
lems on parallel computers. However, they are not well suited for all classes of
computations.


